On the structure of oriented graphs and digraphs with forbidden tournaments or cycles
نویسندگان
چکیده
Motivated by his work on the classification of countable homogeneous oriented graphs, Cherlin asked about the typical structure of oriented graphs (i) without a transitive triangle, or (ii) without an oriented triangle. We give an answer to these questions (which is not quite the predicted one). Our approach is based on the recent ‘hypergraph containers’ method, developed independently by Saxton and Thomason as well as by Balogh, Morris and Samotij. Moreover, our results generalise to forbidden transitive tournaments and forbidden oriented cycles of any order, and also apply to digraphs. Along the way we prove several stability results for extremal digraph problems, which we believe are of independent interest.
منابع مشابه
Pushing vertices in digraphs without long induced cycles
Given a digraph D and a subset X of vertices of D, pushing X in D means reversing the orientation of all arcs with exactly one end in X. It is known that the problem of deciding whether a given digraph can be made acyclic using the push operation is NP-complete for general digraphs, and polynomial time solvable for multipartite tournaments. Here, we continue the study of deciding whether a digr...
متن کاملVertex Removable Cycles of Graphs and Digraphs
In this paper we defined the vertex removable cycle in respect of the following, if $F$ is a class of graphs(digraphs) satisfying certain property, $G in F $, the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $. The vertex removable cycles of eulerian graphs are studied. We also characterize the edge removable cycles of regular graphs(digraphs).
متن کامل0n removable cycles in graphs and digraphs
In this paper we define the removable cycle that, if $Im$ is a class of graphs, $Gin Im$, the cycle $C$ in $G$ is called removable if $G-E(C)in Im$. The removable cycles in Eulerian graphs have been studied. We characterize Eulerian graphs which contain two edge-disjoint removable cycles, and the necessary and sufficient conditions for Eulerian graph to have removable cycles h...
متن کاملOn the cycle structure of in-tournaments
An in-tournament is an oriented graph such that the in-neighborhood of every vertex induces a tournament. Therefore, in-tournaments are a generalization of local tournaments where, for every vertex, the set of inneighbors as well as the set of out-neighbors induce a tournament. While local tournaments have been intensively studied very little is known about in-tournaments. It is the purpose of ...
متن کاملA classification of arc-locally semicomplete digraphs
Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 124 شماره
صفحات -
تاریخ انتشار 2017